Graphene oxide based surface-enhanced Raman scattering probes for cancer cell imaging.
نویسندگان
چکیده
The intrinsic Raman signals provide the potential of graphene oxide (GO) for cellular imaging. Herein, novel surface-enhanced Raman scattering (SERS) labels based on GO-Ag nanoparticle (NP) composites are developed for fast cellular probing and imaging. The optimum SERS signals of the hybrids can be well controlled by adjusting the weight ratio between AgNO(3) and GO. Utilizing GO-AgNPs as the highly sensitive optical probes, fast SERS imaging of cancer cells is realized with a very short integration time of about 0.06 s per pixel. Furthermore, folic acid (FA) is covalently conjugated to GO for targeting specific cancer cells with folate receptors (FRs). Targeted SERS images can be acquired after 2 h incubation with FA-GO-AgNPs, which are specifically located on the surface of FR-positive cancer cells. In conclusion, the GO-based Raman probes mentioned here open up exciting opportunities for biomedical imaging.
منابع مشابه
Cell imaging by graphene oxide based on surface enhanced Raman scattering.
Compared with carbon nanotubes and graphene, graphene oxide (GO) exhibits excellent water solubility and biocompatibility in addition to the characteristic G band in Raman spectra. Therefore GO might be able to act as a flexible Raman probe to image cells or tissues through Raman mapping. However, the weak intensity of the G band restricts such applications of GO. Here we decorated GO with Au n...
متن کاملGraphene oxide-encoded Ag nanoshells with single-particle detection sensitivity towards cancer cell imaging based on SERRS.
Developing ultrasensitive Raman nanoprobes is one of the emerging interests in the field of biosensing and bioimaging. Herein, we constructed a new type of surface-enhanced resonance Raman scattering nanoprobe composed of an Ag nanoshell as a surface-enhanced Raman scattering-active nanostructure, which was encapsulated with 4,7,10-trioxa-1,13-tridecanediamine-functionalized graphene oxide as a...
متن کاملHighly reproducible and sensitive surface-enhanced Raman scattering from colloidal plasmonic nanoparticle via stabilization of hot spots in graphene oxide liquid crystal.
Although it is now well recognized that plasmonic gold/silver nanoparticle based aggregates having electromagnetic hot spots are responsible for high sensitivity in surface-enhanced Raman spectroscopy (SERS), the high yield and reproducible production of such nanostructures are challenging and limit their practical application. Here we show a graphene oxide (GO) based approach in generating sta...
متن کاملSelf-assembled nanoporous graphene quantum dot-Mn3O4 nanocomposites for surface-enhanced Raman scattering based identification of cancer cells
Surface-enhanced Raman scattering (SERS) as an unequivocal surface-sensitive technique has been considered one of the most powerful tools for identifying molecular species. However, the SERS active substrates have mainly been confined to some research on noble metals such as Pd, Au, Ag and Cu. In the present study, we describe the self-assembly of graphene quantum dots (GQDs) with Mn3O4, and th...
متن کاملDevelopment of graphene oxide-wrapped gold nanorods as robust nanoplatform for ultrafast near-infrared SERS bioimaging
The rapid development of near-infrared surface-enhanced Raman scattering (NIR SERS) imaging technology has attracted strong interest from scientists and clinicians due to its narrow spectral bandwidth, low background interference, and deep imaging depth. In this report, the graphene oxide (GO)-wrapped gold nanorods (GO@GNRs) were developed as a smart and robust nanoplatform for ultrafast NIR SE...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 15 8 شماره
صفحات -
تاریخ انتشار 2013